About Us

Based on clinical appearance, color blindness may be described as total or partial. Total color blindness is much less common than partial color blindness.[9] There are two major types of color blindness: difficulty distinguishing between red and green, and difficulty distinguishing between blue and yellow.[10][11]

Immunofluorescent imaging is a way to determine red-green color coding. Conventional color coding is difficult for individuals with red–green color blindness (protanopia or deuteranopia) to discriminate. Replacing red with magenta or green with turquoise improves visibility for such individuals.[12]

The different kinds of inherited color blindness result from partial or complete loss of function of one or more of the three different cone systems. When one cone system is compromised, dichromacy results. The most frequent forms of human color blindness result from problems with either the middle (green) or long (red) wavelength sensitive cone systems, and make it hard to discriminate reds, yellows, and greens from one another. They are collectively referred to as “red-green color blindness”, though the term is an over-simplification and is somewhat misleading. Other forms of color blindness are much more rare. They include problems in discriminating blues from greens and yellows from reds/pinks, and the rarest form of all, complete color blindness or monochromacy, where one cannot distinguish any color from grey, as in a black-and-white movie or photograph.

Protanopes, deuteranopes, and tritanopes are dichromats; that is, they can match any color they see with some mixture of just two primary colors (in contrast to those with normal sight (trichromats) who can distinguish three primary colors). Dichromats usually know they have a color vision problem, and it can affect their daily lives. Out of the male population, 2% have severe difficulties distinguishing between red, orange, yellow, and green. (Orange and yellow are different combinations of red and green light.) Colors in this range, which appear very different to a normal viewer, appear to a dichromat to be the same or a similar color. The terms protanopia, deuteranopia, and tritanopia come from Greek, and respectively mean “inability to see (anopia) with the first (prot-), second (deuter-), or third (trit-) [cone]”.

Anomalous trichromacy is the least serious type of color deficiency.[13] People with protanomaly, deuteranomaly, or tritanomaly are trichromats, but the color matches they make differ from the normal. They are called anomalous trichromats. In order to match a given spectral yellow light, protanomalous observers need more red light in a red/green mixture than a normal observer, and deuteranomalous observers need more green. From a practical standpoint though, many protanomalous and deuteranomalous people have very little difficulty carrying out tasks that require normal color vision. Some may not even be aware that their color perception is in any way different from normal.

Protanomaly and deuteranomaly can be diagnosed using an instrument called an anomaloscope, which mixes spectral red and green lights in variable proportions, for comparison with a fixed spectral yellow. If this is done in front of a large audience of males, as the proportion of red is increased from a low value, first a small proportion of the audience will declare a match, while most will see the mixed light as greenish; these are the deuteranomalous observers. Next, as more red is added the majority will say that a match has been achieved. Finally, as yet more red is added, the remaining, protanomalous, observers will declare a match at a point where normal observers will see the mixed light as definitely reddish.